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It is shown that in the problem of stability of planecparallel flows of perfect fluid 
only a discrete spectrum of eigenvalues exists. Previously this was established 

only in the case of monotonic velocity profile of the basic flow [l, 2-j. Below a 
rigorous proof is given of this for any arbitrary profile. 

The problem of stability of a plane-parallel flow of perfect fluid reduces to 

the Rayleigh equation whose solution is sought in the form of a wave cp (z)* 
exp {ia (z - ct)}. The phase velocity c is the eigenvalue of this equation for 

conditions cp (a) = cp (b) = 0 (see [3])* and the set of such eigenvalues consti- 
tutes the discrete spectrum. If stability is taken to mean the limitedness of any 

(not only wave) paerturbations in time, the question arises whether the continu- 
ous spectrum of the problem existing besides the discrete one can produce insta- 

bility (as a rule, a discrete spectrum contains only a finite number of points). 

Existence of continuous spectrum becomes evident, if the Rayleigh equation is 
written thus : 

(u + u”A-1) Ip = 4, A=:- d2/dx2 + a2, 4 - A\g, (6.1) 

where u is the velocity profile. The absolutely continuous operator Z/A-~ can- 

not alter the continuous spectrum of the operator of multiplication by u-, which 
means that such spectrum occupies the entire segment [urnin, urnax]. 

It was shown in [l. 21 that only a discrete spectrum can generate instability, 
either exponential if c is not real, or power if there are multiple real eigenvalues. 

It was noted subsequently in [4] that only an outline of the proof is given in the 
short papers [ 1, 2 f, and an expanded proof by the same scheme is presented in it. 
However only the simplest case of a monotonic velocity profile u is fully inves- 

tigated in all these papers. The same case was considered in [5], where it isshown 
that for a monotonic velocity profile the operator in the left-hand side of (0.1) 
is equivalent to the self-conjugate one for which spectral expansion exists. Hence 

the Cauchy problem can be solved by expanding in terms of the spectrum, and 
the realness of the continuo~ spectrum ensures the bo~dedness of the related 

part of the problem. The laplace transformation used in [l. 21 is essentially a 
substitute for the general theorem on spectral expansion. 

Here, the method of fl, 21 is extended to the case of a nonmonotonic velocity 
profile, and it is shown that such extension does not alter the fundamental result. 
(The discrete spectrum is not analyzed here, since virtually all works on stability 
deal with it. In particular, the necessary and sufficient condition for the stability 
of a monotonic velocity profile was obtained in [6] and derived again in [5]). 

1 l Let perturbation 9 be superposed on the basic flow at velocity u (2) along the 
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Ox-axis. Linearizing the vortex equation, we obtain 

Aqt’ + @AI&~’ - d’t&’ = 0 

We seek a solution of the form exp ](i a X) CJ (z, t)] with conditions cp (a, t) = 

cp (b, t) = 0 and cp (2, 0) = ‘pa (2). 
Setting 

yl* (2, c) = 5 efiact cp (2, t) dt 
0 

we obtain 

Let us express the solution in terms of Green’s function 

0.1) 

WC) = fpl fb, 4 = - cp2 (a, 4 

where (pt and C& are solutions of the homogeneous equation 

with conditions 

fu - c) (cp” - a”cp) - urn’‘’ = 0 (L2) 

cPl(% 4 = 0, 'PI' (4 c) = 1, 'p2 (b, c) = 0, 'P; (6, c) = 1 

The zeros of w (c> are points of the discrete spectrum. For c -+ 00 function G * de- 
creases as c-l, hence there exists function 

Y i-4-m 

G (z, 5; t) = -& 1 e-iac2G* (z, 5; c) dc CL 3) 
-fi- m 

where y is reasonably great, which yields solution 

2, Let us estimate the behavior of G (z, 5; t) for t + co. For this we omit as far 
as possible the integration contour in (I. 3). This requires the analytic continuation of 
G* from the upper half-plane into some neighborh~ of the real axis. We assume that 
u (z) is analytically continued over the neighborhood of the real axis. 

Lemma. Since ‘pr (z, C) and cpa (z, c) are functions of C , they continue analytic 
tally over the entire real axis, except at points c = u (a), u (b), u (2) and u (z*), 
where z* are extremal points and U’ (.z*) = 0. 

Proof of this appears in cited references, e.g., in [ 13. 

Thus only points c = u (a), u (z) and u (2”) can be singular points of ‘p1 (2, c) , 
and for ‘cs (Z, C) only points u (b), u (z) and u (s*). For the Wronskian w (c) these 
are u (a), u- (6) and u (z*). Function G* (z, 5; C) has singular points c = u (a), 

u (b), u ($ ZJ (z*> and u ( c), and also zeros of function J$’ (c) different from u (a), 
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u (b) and u (z*). The zeros lead to the separation from the integral (1.3) of exponen- 
tial terms which relate to the discrete spectrum. For multiple real zeros we obtain ex- 
~nentially increasing terms. We consider c = u (a) and u (b) to be eigenvalues, if 

for these values solutions which are regular at the related end of the segment (and vanish 
there) vanish at its other end. The quantity c = u (z*) is considered to be an eigen- 
value, if the unique solution regular for z = z* (and becomes a double zero there) vani- 

shes at least at one end of the segment. In what follows we assume that u (a), U (b) 
and u (z*) are not eigenvalues. Proof of the following theorem is given in Sect. 3 be- 
low. 

Theorem 1. If zl (a), u (b} and u (z*) are not eigenvalues, there are no eigen- 
values in their neighborhood. 

Corollary. In this case there is only a finite number of points of the discrete 
spectrum in the region Im c > - a, where E is a reasonably small positive number. 

Theorem 2. If u (a), u (b) and u (Z *) differ from each other and are not eigen- 
values, and there are neither nonlreal nor multiple real eigenvalues, the flow is stable. 

3 + Using the analyticity of the integrand in (1. X), we alter the form of the section 

of the integration path in the neighborhood of such 5 for which u ( C) is an eigenvalue. 
The alteration is carried out according to the rule : down for u’ ( 5) > 0 , up for 
u’ (c) < 0. We denote the altered segment by [a, b]‘. Integration in formula (1.4) 
is also carried out along [a, b]‘. Hence in what follows we always have z E [a, b], 
5 E [a, bf’. Under these conditions function u ( 5) can never be closer to eigenvalues 
than the specified distance. 

Fig, 1 Fig. 2 

To estimate G (z, 5; t) for t -+ 00 we alter the contour in (1.3) by lowering it below 
the real axis, as shown in Fig. 1, by a fixed distance so that it bypasses the bifurcation 

points u(a), u(b), u(e), u ( 5) and all u (z*). The poles of G * which correspond 
to zeros of W yield residues which are exponents of’ t and additive to the integral. The 

contour is drawn so that there are no eigenvalues along it. The radii r of circles are 
chosen within C j t and 2 c / t, where c is a fixed positive number, If two or three 
circles intersect each other, an oval curve is substituted for these (Fig. 2). An additional 

condition will be imposed on the contour after Theorem 1 is proved. 

Along the contour horizontal parts the function is continuous with respect to the set 
of variables z, & and c. Taking into consideration its attenuation when c --f 00, we 

note that along this part of the contour it is uniformly bounded with respect to Z, 5 and 

c. Let us now consider the behavior of ‘pi (z, c) in the neighborhood of singular points 
(the analysis in the case of ‘pa (z, c) is the same). We have to obtain an estimate which 
is valid for c E rr (Fig. 1) and z s [a, b] or [a, tt]‘, 

Lemma. If certain neighborhoods of c = u (z *) (z * are extremal points) are 
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fixed, then outside such neighborhoods the quantity 1 'pl (z, C) 1 is bounded by a single 
constant independent of radii r. If, however, c belongs to one of these neighborhoods, 
the following estimates hold : for z lying to the left of the point z* neighborhood of 
radius 1/ 1 c _ u (2 *) 1 we have 

1% (27 4 I < c q z - z* J + 1/J c - u (z*> I,-’ (3.1) 

and for z lying in that neighborhood or to the right of it 

1 ‘PI (2, c) I< c (I 2 - z* 1 -t- VI c - u (z*) I)’ I c - u @*I P (3.2) 

where C is a fixed constant. For c + u (z*) function W (c) is continuously depen- 
dent on c. When c 3 u (z* ), then 

W (c) r~ const ) c - u (z*) ) -‘L 

Proof. Let, first. c lie outside some fixed neighborhood of u (z *) for all extremal 
points z*but may approach u (a) and u (2). This case is simple and was the subject of 
a fairly detailed analysis(in for instance [4J)it is therefore, not considered here. The 

essential point here is that, although the solutions bifurcate at points z,_, where u (z,) = 
c, they remain continuous. There are also no complications in the case of u (z) = 
u (a), i.e. when the critical points simultaneously approach z and a. Since I+’ (c) = 
vi (b, c), it is also continuous for c --, Ic (a) or c --, u (b) . 

The difficulty arises when c -+ u (z*) (hence this investigation). In this case two 
singular points z, simultaneously approach point s* and it is impossible to avoid these 
by any contour alteration, since the contour passes between the two points. 

Let us assume that at the extremal point U” (z*) > 0 (the degenerate case of 
~“(2”) = 0 is not considered here). Then at c* = u (z*) there is a reasonably small 
region 0, in which the neighborhood O2 of point Z* is mapped in a two-sheeted form 
by function 

U (z) = u (z*) + i/z U” (z*) (z - z*)% + . . . 

Two singular points zc correspond to each c E 0, . The image of 0, within which 
lies the image of the real axis in the form of the double contour, is shown in Fig. 3. 

Function ‘pr (z, c) is everywhere taken as its 
analytic continuation from the upper half- 

plane. 
Two cases are to be distinguished here : 

Re c < u (z*) and He c > u (z*). 
a) I<e c < u (z*).One point Z, lies in 

curvilinear sector (cross-hatched in Fig. 3) 
whose boundaries diverge at angles n / 4 and 

Z’t 3 x / 4. The second point is approximately 
symmetric to the first. For c 3 u. (z*) 
points Zc(1*2) merge. Let us write U (Z) - C 

. Z;’ 
in the form (z - zri) (z - z,~) k and denote 

z - z,2 : g, z,= - z,l = E, (3.3) 
Fig. 3 I--- uM - c2 (U - c)1 k-l = m (c, c) 

It is obvious that 1 E 1 - J//It - u (z*) 1 . The equation assumes the form 
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E (E - E) @” f m (E, E) 0 = 0, 0 (E, E) = cp (2, c) (3.4) 

where m (E, E) is a smooth function of two variables. analytic with respect to E. 
With respect to the asymptotic behavior of solutions of such equations we can prove 

the following. Let us consider equation 

E2@” + rn (E, 0) CD = 0 (3.5) 

whose limit occurs at E = 0 . It has one solution O,, (E, 0) which for E = 0 tends 
to zero as ghl, where h, is the greatest root of the equation h (A - 1) + m (0, 0) = 
0, which is assumed to be real (it will be shown that in this case it is so). It is obvious 
that h, is greater than ‘/a. Equation (3.4) has a solution which is analytic in zero and 
tends to vanish there as E. by suitable normalization the solution @,(g, E) tends uni- 

formly to CD0 (E, 0) in the region of plane g shown in Fig. 3 outside the cross-hatched 
sector with fixed angle 2~. If in any region to the left of the neighborhood of the mer- 
ging points E = 0 and g = c , any of the remaining solutions 0 (g, e) of Eq.(3.4) 

tends to solution CD (E, 0) of EQ. (3.5), then to the right of that neighborhood such solu- 
tion, being analytically continued along the contour which passes between the singular 

points E = 0 and 5 = E, represents the sum of the other branch of that functionwhich 
bypasses the singular point g = 0, and of the expression 

KZD@, (6, 0) E1-2’1 11 + 0 (E)] 

where K is some absolute nonzero constant and w is the Wronskian of solutions @ (E, 

0) and a,, (E, 0). If w # 0, this term tends to infinity when E - 0 owing toh, > 

‘12. On the other hand, the first term, which is a function continued into the bypass ofa 
singular point, is continuous for E - 0. For the neighborhood itself of merging singular 
points E = 0 and g = E the following estimate is valid : in the 1 E ) -neighborhood 
of point E = 0 and to the left of it 

I@ (ET &) 1 < c (1 E 1 + 1 E I,‘-A1 

while to the right of that nerghborhood 

(3.6) 

(3.7) 

(in the neighborhood of J e f these estimates close in). Proof of this is given in g]. 

Applying this to our case, we note that here m (0, 0) = - 2, as follows from (3.3), 

hence h, = 2. Estimates (3.6). (3.7) and ( E 1 - J/ 1 c - u (z*) 1 yield (3.1) and 

(3.2). 
The Wronskian of solutions ‘pr (z, c) and CD (z, c) = CD, (E, (1) is nonzero, since 

otherwise a solution which for c = c* is regular at the extremal point z* would satisfy 

the boundary condition for z = a, i.e. c* would be an eigenvalue, which contradicts our 
assumption. It follows from this that for c -b c* 

w (c) - Kw mo(b, c*) E-3 11 + 0 (E)] (3. B) 

But for the same reason CD (b, c*) # 0 , hence a solution which is regular at point 
Z* for c = c* cannot satisfy the boundary condition at the right-hand end. Thus in the 
region of c = c * function w (c)tends to infinity. 

b) Re c > u (z*). The equation must be integrated along the altered contour. 
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Point z,(r), analogous to point 2, of lying in Fig. 3 within the cross-hatched angle, now 
lies, as shown in Fig, 4, in the cross-hatched sector whose boundaries at point .a* diverge 

at angles 3 x I 4 and 5 JX / 4. The integration contour is also shown in Fig. 4. All esti- 
mates remain valid. The lemma is proved. 

Fig, 4 

The proof of Theorem 1 follows directly from the lemma, In fact, in the neighborhood 

of c = u (z*) function W(c) cannot have zeros, since by virtue of (3.8) it tends to 

infinity, while, as shown earlier, at points c = u (a) and c = u (b) this function is 
continuous. If at these points it is nonzero (as assumed in the condition of the theorem), 
it is also nonzero in the indicated region. 

4. Finally, let us prove Theorem 2. For this we estimate G* (z, 5; c) along the 
contour I’,., Since in the neighborhood of the real axis there is only a finite number of 

points of the discrete spectrum, radius r may be chosen so that the circles do not lie 

closer to eigenvalues than r i 4. The contour horizontal part may be assumed to lie 
above all eigenvalues in the lower half-plane. The estimate 

is then valid. 

1 G* (z, 5; c) 1 < const / r 

In fact, outside the fixed neighborhood of extremal points the numerator in formula 
(1.1) for Green’s function is limited. The multipliers u (5) - c and W (c) are not 

smaller in modulo than the constant multiplied by P , and both cannot be simultaneously 
small, since for 5 E [a; b]’ the expression u ( 5) nowhere approaches the eigenvalue, 

Let us now consider the values of t in the neighborhood of u (2 ‘1. 

Let at the beginning Z < 5 Q z*. Then 1 z - Z* 1 > 1 5 - z* 1 and by the 
last lemma we have 

~(~~(z,c)cp,(1;,c)t<const.([z -z*I + Vlc-PI)-" x 

(estimates by the last lemma are obviously applicable to ‘pz, if words “to the left of’ 

con&. 1 c - 7.4 (z*) I-‘:2 
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are substituted for “to the right of” and vice versa). Taking into account that @’ (c) N 

const jc - u (z*)I+z, we obtain the required estimate for C*. 

For 2 < Z* \c 5 we obtain the even stronger estimate 

I ‘pl (G 4 ‘Pa (5 7 4 I < \ consL.(I 2 -_ 2” 1 +Vl c - u (z*) I)-” X 

(I r, - z* 1 + v 1 c- u (z*) I>-’ <const - 1 c - u (P) I” 

The remaining cases of symmetrical disposition of z, z* and < reduce to the case 

considered above. 

Let us now recall the transformation formula 

G(M)=& 5 e-iacfG*(z,<;c)dc +. . . 

I’, 
where the dots denote the sum of residues over the discrete spectrum. For t + ‘Jo and 

owing to exp (-- iacl) and the boundedness of jG* f , the integral r,, along the hori- 

zontal part of the contour tends exponentially to zero. Along the circles values of 

exp (- iact) are limited, since r is of the order of t-l. The length of circles is ofthe 

order of r, and [G* 1 < Cr -1. Hence the integrals along the circles are bounded for 
t-too. 

Integrals over vertical segments 
m 

IS e-iaCfG*dc I< C ( exp (a Im et) td I Im c I < const 
0 

are bounded for the same reason. 
Theroem 2 is proved. 
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